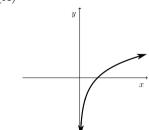
Instituto Tecnológico de Costa Rica

Tercer examen parcial Precálculo Décimo anual

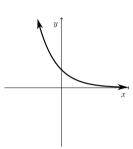
Sábado 29 de setiembre de 2018

Instrucciones Generales:

- 1. Lea cuidadosamente cada instrucción y pregunta antes de contestar.
- 2. Esta es una prueba de 45 puntos que consta de tres partes: selección única (15 puntos), respuesta corta (10 puntos) y de desarrollo (20 puntos).
- 3. Las expresiones algebraicas que se presentan en este examen se asumen bien definidas en \mathbb{R} .
- 4. En los ítems de desarrollo debe aparecer todo el procedimiento necesario para obtener su solución.
- 5. Escriba con bolígrafo de tinta indeleble azul o negra. No proceden reclamos sobre pruebas escritas con lápiz o que presenten alguna alteración.
- 6. No se permite el uso de celulares.
- 7. Si algún procedimiento está desordenado, no se calificará.
- 8. La calculadora que puede utilizar es aquella que contiene solo las operaciones básicas.
- 9. La prueba debe resolverse individualmente.
- 10. Dispone de 3 horas para resolver la prueba.

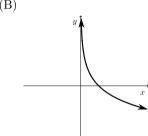

lombre:			
	Código:		

I Parte. Selección Única.

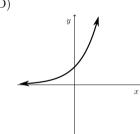

A continuación se le presentan 15 enunciados, cada uno con cuatro opciones de respuesta de las cuales solo una es correcta. Seleccione la opción que completa de forma correcta cada enunciado y márquela en la hoja de respuestas.

1. Sea la función $f: D_f \to \mathbb{R}$, donde D_f es el dominio máximo de la función. Su criterio es: $f(x) = e^{-x}$. Por lo tanto, su gráfica corresponde a

(A)



(C)



Valor: 15 puntos

(B)

(D)

2. Sea la función $g:D_g \to \mathbb{R},$ donde D_g es el dominio máximo de la función. Si su criterio es:

$$g(x) = \left(\frac{4}{3}\right)^{\sqrt{-x}}$$
, el conjunto D_g corresponde a

$$(A)$$
 \mathbb{R}

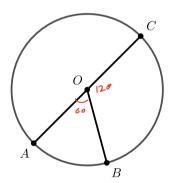
(B)
$$[0, +\infty[$$
 $\chi \leq 0$

(D)
$$\mathbb{R} - \left\{ \frac{4}{3} \right\}$$

- 3. Si $\log_2{(x)}=3,$ entonces el valor de x corresponde a
 - $(A) 8 \qquad |_{32} = 3$
 - (B) 9
 - (C) 5
 - (D) 1
- 4. Dada la función $h: \mathbb{R}^+ \to \mathbb{R}$, con criterio $h(x) = \log_a(x)$, donde $a \in \mathbb{R}^+ \{1\}$. Si la gráfica de la función h es creciente, entonces con certeza se puede concluir
 - (A) h(a) = 0
 - (B) h(1) = a
 - (C) 0 < a < 1
 - (D) a > 1
- 5. La expresión $\frac{\log_3{(4)}}{\log_3{(2)}}$ es equivalente a
 - (A) $\log_3(4) \log_3(2)$
 - (B) $\log_2(4)$
 - (C) $\log_3(4) + \log_3(2)$
 - (D) $\log_4(2)$
- 6. La expresión $\ln\left(\frac{x}{yz}\right)$ es equivalente a

 - (B) $\ln(x) \ln(y) + \ln(z)$
 - (C) $\ln(x) + \ln(y) \ln(z)$
 - (D) $\ln(x) + \ln(y) + \ln(z)$

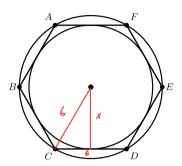
- 7. La expresión $4^{\log_2(x)}$ es equivalente a


 - (C) \sqrt{x}
 - (D) x^2
- 8. El conjunto solución de la ecuación $5^{x-3} = 25^{2x-1}$ corresponde a
 - $5^{x-3} = 5^{2(2x-1)}$ (A) $\{-2\}$
 - (B) ℝ
 - (C) $\left\{-\frac{1}{3}\right\}$
 - (D) Ø
- 9. El conjunto solución de la ecuación $\ln(x) + \ln(x 1) = \ln(2)$ corresponde a
 - 1x(x2-x)=162 (A) {2} (B) $\{-1\}$
 - x=2 x=-1 (C) $\{-1,2\}$
 - (D) \emptyset
- 10. Una población de 1000 individuos empieza su crecimiento siguiendo la ecuación:

$$N = 1000e^{2t}$$

donde N es el número de individuos t años después. ¿Cuántos años deben pasar para tener 2000 habitantes?

- (A) $1000e^{4000}$
- $2000 = 1000e^{2t}$ $2 = e^{2t}$ $1x^2 = 2t$ (B) $\frac{\ln{(2)}}{2}$
- (C) e^2
- (D) $\frac{\ln{(2000)}}{2}$


- 11. Suponiendo que $\log(2) = 0,301$ y $\log(3) = 0,477$, entonces el valor numérico aproximado de $\log(6)$ corresponde a
 - (A) 0,631
 - A) 0,031 0.301 + 0.417
 - (B) 0,144
 - (C) 0,176
 - (D) 0,778
- 12. ¿Cuál es la distancia, en metros, de una cuerda de 2 metros al centro de una circunferencia de radio 2 metros?
 - (A) 2
 - (B) 4
 - (C) $\sqrt{3}$
 - (D) $2\sqrt{3}$
- 13. Considere el siguiente círculo de centro O.

Si el arco menor AB mide 60°, la medida del ángulo $\angle BOC$ corresponde a

- (A) 60°
- (B) 120°
- (C) 30°
- (D) 240°

14. Considere la siguiente figura, la cual consiste en el hexágono regular ABCDEF inscrito en un círculo y circunscrito en otro círculo.

Si la medida del lado del hexágono es 6 centímetros, entonces la medida del radio del círculo inscrito al polígono corresponde a ϵ

- (A) $3\sqrt{3}$
- h = 1/3/2
- (B) 3
- h=353
- (C) 6
- (D) $\sqrt{3}$
- 15. Un polígono regular de 23 lados, cuya medida de cada lado es 1 mm, tiene un área aproximada de $41,83 \text{ mm}^2$. La medida aproximada de la apotema corresponde a
 - (A) 83,66
- $A = \frac{P \cdot ap}{2}$
- P - 2

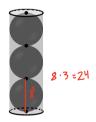
- (B) 60,66
- 41.83 = 23 · ap
- (C) 1,82
- Q3.66 =23 9P
- (D) 3,64
- 3.637=ap

II Parte. Respuesta corta.

Instrucciones: Resuelva cada uno de los siguientes ejercicios y escriba lo que se solicita en el espacio brindado en la hoja de respuestas.

- 1. ¿Cuál es el conjunto solución de la ecuación $3^{5-x} = \left(\frac{1}{3}\right)^{x-5}$?
- 2. ¿Cuál es el conjunto solución de la ecuación $\log_2(-x^2-x)=0$?
- 3. Considere la siguiente figura, en donde el pentágono ABCDE y el triángulo FGH son polígonos regulares.

 $h = \frac{\sqrt{3}}{2}$ $h = \frac{6\sqrt{3}}{2}$ $h = \frac{3\sqrt{3}}{3}$ $ap = \frac{3\sqrt{3}}{3}$ $ap = \frac{2\sqrt{3}}{3}$ $r = \frac{2}{5} \cdot 3/3$ $r = \frac{6\sqrt{3}}{5}$ $r = 2\sqrt{3}$ $A = \frac{2\sqrt{3}}{4}$ $A = \frac{36\sqrt{3}}{4}$ $A = \sqrt{3}$


Si se sabe que el lado del tiángulo FGH mide 6 cm, determine las medidas exactas de:

Valor: 10 puntos.

- (a) Apotema del triángulo FGH.
- (b) Radio del triángulo FGH.
- (c) Apotema del pentágono ABCDE.
- (d) Área del triángulo FGH.
- (e) Radio del círculo menor.

253

4. Un recipiente de pelotas de tenis tiene forma de cilindro circular recto. Se sabe que este tiene como capacidad máxima 3 pelotas, cada una con radio de 4 centímetros, tal y como se muestra en la figura adjunta. ¿Cuál es la altura del cilindro?

- 5. Dos conos circulares rectos tienen el mismo vértice y bases paralelas que distan 3 cm entre sí. En el cono mayor la altura es de 5cm y el radio mide 4 cm. ¿Cuánto mide el radio del cono menor?
- 6. La base de un paralelepípedo es un cuadrado de lado x metros. Si la altura es el doble del lado de la base, ¿cuál es el volumen de este sólido?

7

Instituto Tecnológico de Costa Rica

Tercer examen parcial Precálculo Modalidad anual

Sábado 29 de setiembre de 2018

mbre:			
	Código:		
1 .			

Valor: 15 puntos

I Parte. Selección Única.

A continuación se le presentan 15 casillas. Escriba la letra que escogió para su respectivo enunciado.

1	4	7	10	13	
2	5	8	11	14	
3	6	9	12	15	

II Parte. Respuesta corta.

Instr	ucciones: Escriba sus respuestas en el espacio correspondiente.
1.	
2.	
3.	(a)
	(b)
	(b)
	(c)
	(d)
	(e)
4.	
5.	

Valor: 10 puntos.

III Parte. Desarrollo.

Total: 20 puntos

5 puntos

A continuación se le presentan 4 ejercicios. Resuélvalos en forma clara, correcta y ordenada. Deben aparecer todos los procedimientos necesarios para resolver cada uno de ellos.

1. Sea $f: D_f \to \mathbb{R} - \{0\}$ una función, con D_f su dominio máximo. Si se sabe que el criterio es:

$$f(x) = \frac{1}{2} \log \left(\frac{x+3}{x-3} \right) .$$

2. Escriba la siguiente expresión como un sólo logaritmo, y simplifique.

5 puntos

$$2\log_{b}\left(\frac{y^{3}}{x}\right) - 3\log_{b}\left(x\sqrt[5]{y^{2}}\right) + \frac{1}{2}\log_{b}\left(x^{4}y^{2}\right) + 1$$

$$\log_{b}\left(\frac{y^{3}}{x}\right)^{2} - \log_{b}\left(x\sqrt[5]{y^{2}}\right)^{3} + \log_{b}\sqrt{x^{4}y^{2}} + \log_{b}b$$

$$\log_{b}\frac{y^{4}}{x^{2}} - \log_{b}x^{3}\sqrt[5]{y^{6}} + \log_{b}x^{2}y + \log_{b}b$$

$$\log_{b}\frac{y^{4} \cdot x^{2} \cdot y \cdot b}{x^{2}} - \log_{b}x^{3}\sqrt[5]{y^{6}}$$

$$\log_{b}y^{2}b - \log_{b}x^{3}\sqrt[5]{y^{4}}$$

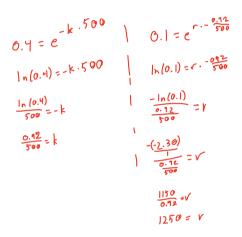
$$\log_{b}\frac{y^{2}b}{x^{3}\sqrt[5]{y^{4}}}$$

$$\log_{b}\frac{y^{2}b}{x^{3}\sqrt[5]{y^{4}}}$$

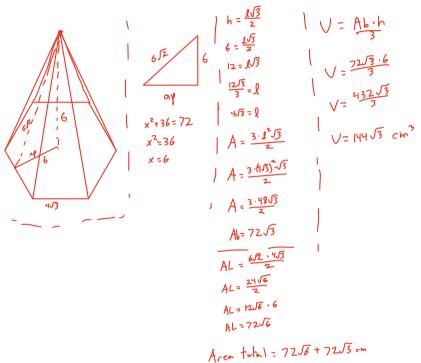
$$\log_{b}\frac{y^{2}b}{x^{3}\sqrt[5]{y^{4}}}$$

$$\log_{b}\frac{y^{2}b}{x^{3}\sqrt[5]{y^{4}}}$$

$$\log_{b}\frac{y^{2}b}{x^{3}\sqrt[5]{y^{4}}}$$


3. Cuando las células cancerosas se someten a radiación, la proporción de células sobrevivientes al tratamiento está dada por la fórmula:

$$P = e^{-kr}$$


donde r es el nivel de radiación y k una constante. Se sabe que cuando el nivel de radiación es 500 Roentgen, sobrevive el 40% de las células cancerosas. Determine el nivel de radiación que se debe aplicar si se espera que sobreviva únicamente el 10%.

5 puntos

Sugerencia: $\ln(0,4) \approx -0.92 \text{ y } \ln(0,1) \approx -2.30$

4. Determine el volumen y el área total de una pirámide recta si la base es un hexágono regular, donde la apotema de la pirámide mide $6\sqrt{2}$ centímetros y su altura es 6 centímetros. 5 puntos

