Instituto Tecnológico de Costa Rica

I examen parcial Precálculo Décimo anual 2021-2022

Lunes 27 de setiembre de 2021

Instrucciones Generales:

- 1. Lea cuidadosamente cada instrucción y pregunta antes de contestar.
- 2. Esta es una prueba de 50 puntos que consta de tres partes: selección única (15 puntos), respuesta corta (15 puntos) y de desarrollo (20 puntos).
- 3. Las expresiones algebraicas que se presentan en este examen se asumen bien definidas en \mathbb{R} .
- 4. En los ítems de desarrollo debe aparecer todo el procedimiento necesario para obtener su solución.
- 5. Escriba con bolígrafo de tinta indeleble azul o negra. No proceden reclamos sobre pruebas escritas con lápiz o que presenten alguna alteración.
- 6. Durante la prueba no se permite el uso de celulares, calculadora científica u otros dispositivos electrónicos.
- 7. Si algún procedimiento está desordenado, no se calificará.
- 8. La prueba debe resolverse individualmente.
- 9. Dispone de 3 horas para resolver la prueba.
- 10. Durante el periodo de aplicación de la prueba debe aplicar correctamene los protocolos definidos, en particular utilizar la mascarillas y guardar el distanciamiento establecido.

lombre:			
	Código:		
Colegio:			

I Parte. Selección Única.

A continuación se le presentan 15 enunciados, cada uno con cuatro opciones de respuesta de las cuales solo una es correcta. Seleccione la opción que completa de forma correcta cada enunciado y márquela con una X. Vale un punto cada respuesta correcta.

1. Si la medida del lado de un cuadrado es $\frac{15}{\sqrt{6}}$ cm entonces su perímetro, en cm, corresponde a

(a) $\frac{75}{2}$

 $\frac{15}{\sqrt{6}} \cdot 4 = \frac{60}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{60\sqrt{6}}{6} = 10\sqrt{6}$

Valor: 15 puntos

(b) $\frac{60}{4\sqrt{6}}$

(c) $10\sqrt{6}$

 $(d) \ \frac{15\sqrt{6}}{6}$

2. Para racionalizar el denominador de $\frac{5}{2+\sqrt[3]{4}}$ se pueden multiplicar el numerador y el denominador por la expresión

(a) $2 + \sqrt[3]{4}$

4-234+342 922 222

(b) $2 - \sqrt[3]{4}$

4-84+232

(c) $4 + 2\sqrt[3]{4} + 2\sqrt[3]{2}$

(d) $4 - 2\sqrt[3]{4} + 2\sqrt[3]{2}$

3. El resultado de la operación $\frac{a^{-1}-b^{-1}}{b-a}$ corresponde a

(a) *ab*

1 - 1

(b) $\frac{1}{ab}$

b-10

(c) $\frac{1}{ab(b-a)}$

-

(d) $\frac{1}{b^2 - a^2}$

- 4. Si P(x) es una fracción algebraica tal que $P(x) \div \frac{x-2}{x-1} = \frac{1}{(x-1)^2}$ entonces P(x) corresponde a
 - (a) $\frac{x-2}{(x-1)^3}$

 $P(x) = \frac{1}{(x+1)^2} - \frac{x-2}{x-1}$

(b) $\frac{(x-1)^3}{x-2}$

 $P(x) = \frac{x-z}{(x-1)^3}$

- (c) $\frac{1}{(x-1)(x-2)}$
- (d) $\frac{x-1}{x-2}$
- 5. El resultado simplificado de la operación $\frac{2x}{1-x} + \frac{3x}{x+1}$ corresponde a
 - (a) $\frac{5x}{1-x^2}$
- $\frac{2 \times (k+1) + 3 \times (1-x)}{(1-x)(x+1)}$
- (b) $\frac{5-x^2}{x^2-1}$

 $2x^{2} + 2x + 3x - 3x^{2}$

(c) $\frac{x^2-5}{x^2-1}$

(d) $\frac{x^2}{1-x^2}$

- $\frac{\int_{x-x^2}^{x}}{\frac{1-x^2-x}{x^2-1-x^2}} = \frac{\int_{x-x^2}^{x}}{\frac{1-x^2}{1-x^2}} \frac{-(\int_{x-x^2}^{x}-x^2)}{(x^2-1)} \frac{x^2-\int_{x}^{x}}{x^2-1}$
- 6. ¿Cuántas soluciones reales diferentes tiene la ecuación $(x+3)(x+4) = (x+3)(x+4)^2$?
 - (a) 1

(x+3)(x+4) = (x+3) (x+42)

(b) 2

(x+3)(x+4)-(x+3)(x+4)2 =0

(c) 3

0 = (\(\nu_{\chi_{+}}\) \((\nu_{+}x)\) \(\chi_{+}x)\) \(\chi_{+}x)\) \(\chi_{+}x)\) \(\chi_{+}x)\)

(d) 4

- 7. Si una solución de la ecuación $ax^2 6x 4 = 0$ es el número $\frac{3 \sqrt{65}}{14}$ entonces el valor de a corresponde 1=0
 - (a) 14
- (-6)2-4-4-a=1
- (b) 7

36+16a= D

- (c) -7
- (d) -14

- 6- /36+16a

- $\frac{3-\sqrt{9+4a}}{a} = \frac{3-\sqrt{65}}{14}$

- 8. ¿Cuántas soluciones reales tiene la ecuación $\sqrt{x} = x 6$?
 - (a) 0

- $x = (x G)^2$ $x = x^2 - 12x + 36$
- J9 = 4-6

(b) 1

- $x = x^{2} 12x + 36$ $x = x^{2} 13x + 36 = 0$ x = 169 194 x = 169 194

- (c) 2
- (d) infnitas
- 9. ¿Cuál es el conjunto solución de la ecuación $\frac{x^2+5}{x+2} = \frac{1-4x}{x+2}$?
 - (a) $\{2, -2\}$

x2+5 = 1-4x

(b) {2}

x² + 4 x + 4 x 2 (x + 2)² & x = - 2

(c) $\{-2\}$

- (d) {}
- 10. ¿Cuántas soluciones tiene la ecuación -2|3-2x|+12=0?
 - (a) 0

13-2x = 6

- (b) 1
- (c) 2
- (d) infinitas
- 11. ¿Cuál es el conjunto solución de la ecuación $\sqrt{(2-x)^2} 3 = 0$?
 - (a) {1}

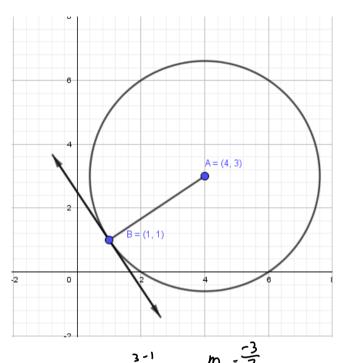
12-x1-3=0

(b) $\{-1\}$

(c) $\{3, -3\}$

(d) $\{5, -1\}$

12. Considere la recta tangente en B(1,1) a la circunferencia de centro A(4,3). ¿Cuál es la pendiente de esa recta?

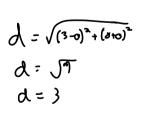


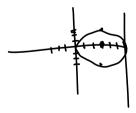
- (a) $\frac{2}{3}$
- (b) $\frac{3}{2}$
- (c) $\frac{-2}{3}$
- (d) $\frac{-3}{2}$
- 13. Considere una circunferencia cuyo centro es el punto de coordenadas (3,0) y que es tangente al eje de las ordenadas. ¿Cuál de las siguientes ecuaciones corresponde a otra recta tangente a esa circunferencia?

(a)
$$y = x$$

- (b) y = 6
- (c) x = 6
- (d) x = -3

3,0 Q0





- 14. Considere la recta L_1 que contiene a los puntos de coordenadas (-2,5) y (5,-3) y la recta L_2 de ecuación 8x + 7y = 2. Se puede asegurar que L_1 y L_2
 - sx + 7y = 2. Se puede asegurar que L_1 y L_2 9x+7y=2 7y=-8y+7(b) son la misma recta. $y=-\frac{3}{7}x+2$ $m=\frac{-3-5}{5+2}$ $m=\frac{-3-5}{5+2}$
 - (c) se intersecan perpendicularmente.
 - (d) se intersecan pero sin formar ángulos rectos.
- 15. Las ecuaciones de dos rectas paralelas son $y = \frac{2x-5}{3}$ y y = kx+1. Se puede asegurar que el valor de k es
 - (a) 2
 - (b) $\frac{2}{3}$
 - (c) $\frac{3}{2}$
 - (d) $\frac{-3}{2}$

II Parte. Respuesta corta.

Instrucciones: Resuelva cada uno de los siguientes ejercicios y escriba lo que se solicita en el espacio brindado. Vale un punto cada respuesta correcta.

Valor: 15 puntos.

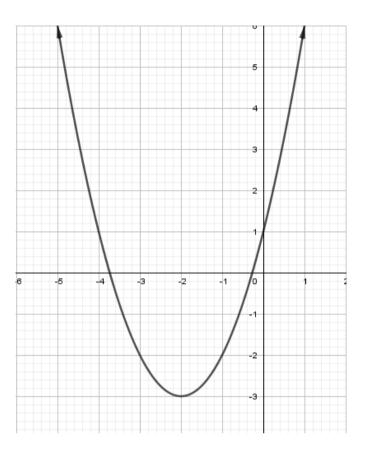
1. Determine la factorización completa de los siguientes polinomios:

(a) (1 punto)
$$x^{4} + 10x^{2} + 9 = \frac{(x^{2} + 9)(x^{2} + 1)}{1}$$

$$(x^{2} + 1)(x^{4} + 1)$$

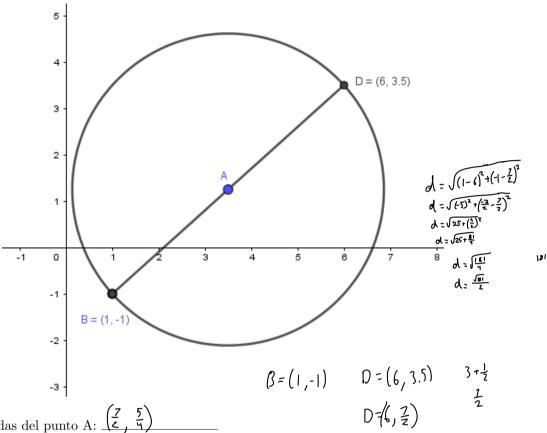
- (b) (2 puntos) $(x^2 3)(3x 2) + (2x 3)(-3x + 2) = \underbrace{x(x-2)(3_x-2)}_{(x^2-3)(3_x-2) (3_x-2)(2_x-3)}$ $(3_{x-2})(x^2-3 - 2_{x+3})$ $(3_{x-2})(x^2-2_x) = x(x-2)(3_{x-2})$
- (c) (2 puntos) $ax^3 + bx^3 + a + b = \underline{(x+1)(x^3-x+1)(a+b)}$ $(ax^3+bx^3) \uparrow (A+b)$ $x^3(a+b) \uparrow |(a+b)| = 0$ $(x^3+b)(x^3-x+1)(a+b)$ $(x^4-x+1)(x^4-x+1)(a+b)$

2. Considere la parábola de la siguiente gráfica cuya ecuación es de la forma $y=a(x-h)^2+k$ e indique:



- (a) El valor de $h = \underline{\hspace{1cm}}$
- (b) El valor de k =
- (c) El signo de a
- (d) La ecuación del eje de simetría: $\chi = -Z$
- (e) Signo del discriminante del polinomio $a(x-h)^2+k$:

3. Considere la circunferencia K de centro A de la siguiente figura. Si B y D son extremos de un diámetro indique lo siguiente:



- (a) Coordenadas del punto A: $\left(\frac{Z}{\zeta}, \frac{5}{4}\right)$
- $\left(\frac{1+6}{2}, -\frac{1+3.5}{2}\right)$ $\frac{7}{2}$, $\frac{5}{2}$
- (b) Medida del diámetro de K: $\frac{18}{2} = \frac{18}{2} \cdot \frac{1}{2} = \frac{(121)^2 \cdot 161}{4}$ (c) Ecuación de la circunferencia $K: (x-\frac{7}{2})^{\frac{5}{4}} (y-\frac{5}{4})^{\frac{2}{5}} = \frac{151}{16}$
- (d) ¿La recta de ecuación y = x es tangente, secante o exterior a la circunferencia K? $(x-\frac{7}{2})^2 + (x-\frac{5}{2})^2 = \frac{151}{4}$
- (e) ¿La circunferencia K es tangente, secante, interior o exterior a la de ecuación $x^2 + y^2 = 64$? Interiores

III Parte. Desarrollo.

Valor: 20 puntos.

Instrucciones: Resuelva de forma completa y ordenada cada uno de los siguientes ejercicios. Debe indicar todo el procedimiento que justifique la respuesta.

1. (4 puntos) Racionalice el numerador de la siguiente expresión y simplifique al máximo.

$$\frac{\sqrt{x^{2}-3x-2}}{128-2x^{3}} \cdot \frac{\sqrt{x^{2}-3x}+2}{\sqrt{x^{2}-3x}+2} = \frac{(x^{2}-3x-4)}{(128-2x^{2})(\sqrt{x^{2}-3x}+2)}$$

$$= 2 \frac{(x-4)(x+1)}{2(x^{2}-3x+2)}$$

$$= 2 \frac{(x-4)(x+1)}{2(x^{2}-3x+2)(x^{2}-3x+2)}$$

$$= \frac{(x-4)(x+1)}{2(x^{2}-3x+2)(x^{2}-3x+2)}$$

$$= \frac{x+1}{-2(16x^{2}+x^{2})(\sqrt{x^{2}-3x+2})}$$

2. Encuentre las soluciones reales de las siguientes ecuaciones:

(a) (5 puntos)
$$(x^{3} - x)^{2} = 36$$

$$x^{3} - x = \pm 6$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} - x - 6)(x^{3} - x + 6)$$

$$(x^{3} -$$

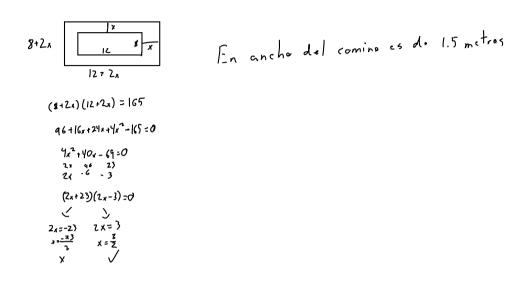
$$\frac{x+1}{x-2} + 1 = \frac{5}{2-x}$$

$$\underbrace{x+1+1(x-2)}_{x-2}=\underbrace{-5}_{x-2}$$

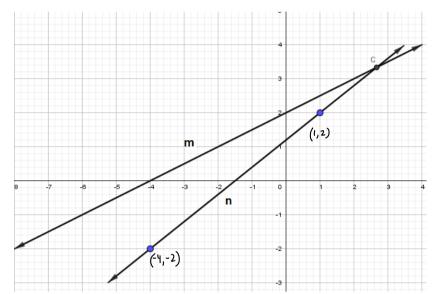
$$\frac{x+1+x-2}{x-2} = \frac{-5}{x-2}$$
 $x \neq 2$

3. (4 puntos) Resuelva el siguiente problema:

Un jardín rectangular de 12m de largo y 8m de ancho se rodea de un camino de ancho uniforme. El área del total del terreno del jardín y el camino es de 165 m^2 . ¿Cuál es el ancho del camino?



- 4. Considere las rectas n y m de la siguiente gráfica. La ecuación de la recta m es -x+2y=4. Determine:
 - (a) (2 puntos) La ecuación de la recta n.
 - (b) (2 puntos) La âbscisa del punto C.



$$m = \frac{4}{5}$$

$$b = 2 - \frac{4}{5}$$

$$b = \frac{10}{5} - \frac{4}{5}$$

$$b = \frac{6}{5}$$

$$b = \frac{6}{5}$$

$$y = \frac{4}{5}x + \frac{6}{5}$$

$$x = \frac{4}{5}$$

$$x = \frac{4}{5}$$

$$-x + 2\left(\frac{4x + 2}{5}\right) = 4$$

$$-x + \frac{6x + 12}{5} = 4$$

$$-x + \frac{6x + 12}{5} = 4$$

$$-x + \frac{6x + 12}{5} = 20$$

$$3x = 20 - 12$$

$$3x = 8$$

$$x = \frac{8}{3}$$